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Twin laws for trigonal, tetragonal and hexagonal crystals describing twins with
principal axes inclined by an angle & > 0 are analysed. Twins by reticular
merohedry (i.e. obliquity 8 = 0) are possible only for certain values s of the axial
ratio c¢/a. For any other axial ratio r, the laws describe twinning by reticular
pseudo-merohedry, i.e. with obliquity & > 0. It is shown that (@) tan§ is a product
of two factors, one of which is sin ®, the other depends only on the relative
deviation of r from s; (b) tand >~ &, where ¢ denotes the deformation parameter
introduced by Bonnet & Durand [Philos. Mag. (1975), 32, 997-1006]. The angle
@ is listed for all cases of reticular merohedry of trigonal, tetragonal and
hexagonal (i.e. optically uniaxial) crystals with twin index ¥ < 5. Mallard’s
criterion requires that twin laws by (reticular) pseudo-merohedry have ¥ < 5
and § < 6°. Le Page [J. Appl. Cryst. (2002), 35, 175-181] has written a program
determining laws with twin index £ < X_,., and obliquity § < §,,.x for any given
lattice geometry. Here those solutions are analysed and completed for optically
uniaxial crystals. Their lattices are characterized by the Bravais class (¢P, tI, hP
or hR) and the axial ratio c/a = r. For small §,,,,, most solutions are related to
(reticular) merohedry for an appropriate value s ~ r of the axial ratio. It is
argued that other solutions, which are not related to (reticular) merohedry, are
not needed to explain observed laws of growth twinning but may be important to
interpret observed laws of deformation twinning.

1. Introduction

A twin consists of two adjacent crystal individuals of the same
phase, the orientations of which are related by a so-called twin
law. The corresponding lattices, 1 and 2, are obviously
congruent. We restrict our attention to optically uniaxial
crystals, i.e. to lattices of Bravais types tP, tI, hP and AR, which
have a principal four-, six- or threefold symmetry axis, re-
spectively, and which can be characterized (up to similarity) by
the axial ratio c/a. The rotation R that maps lattice 1 onto
lattice 2 can be decomposed as R = R R, where R, and R
are rotations with axes perpendicular and parallel to the
principal axis of lattice 1, respectively; R is performed first.
Owing to the tetragonal, hexagonal or trigonal holohedry of
the lattice, the angle and axis of the rotation R are not
uniquely determined. Let ® be the smallest rotation angle that
maps lattice 1 onto 2. Then the angles ® of R, and W of R
may be chosen such that 0 < & < ©, 0 < ¥V < © and
cos(®/2)cos(W/2) = cos(®/2) (Grimmer & Bonnet, 1990).
Because R leaves the principal symmetry axis invariant and
R rotates it by @, it follows from R = R R that ® is the
angle between the principal symmetry axes of the two indi-
viduals.

If the rotation is such that lattices 1 and 2 have a fraction
1/¥ of translation vectors in common, then ¥ is always an
integer, called twin index or multiplicity. We speak of twinning
by merohedry (X = 1) or by reticular merohedry (¥ > 1),
respectively. If R = R, ie. ® = 0 and W = O, then X is
independent of c/a and R is called a common coincidence
misorientation. If ® > 0, then ¥ depends also on the axial ratio
and assumes finite values only for specific ratios c/a = s, for
which ¢/a® is rational, ie. ¢*a® = /v, where n and v are
integers without common divisor. We then speak of a specific
coincidence misorientation.

All common and most specific coincidence misorientations
with a low value of X can be described also by a 180° rotation
about an appropriate lattice direction [uvw]. If this is the case
then the plane (hk/) normal to [uvw] is a lattice plane (i.e. all
six components A4, k, [ and u, v, w are integers). Both the 180°
rotation with axis [uvw] and the mirror reflection in (hk/) then
describe the same misorientation of the two lattices. We shall
indicate the cases in which the misorientation can be described
also by a 60, 90 or 120° rotation. If the point group of the
crystal structure is a subgroup of the lattice holohedry, then
different descriptions of the same lattice misorientation may
correspond to different twin laws by reticular merohedry, i.e.
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to different relations between the orientations and handed-
ness (if applicable) of the two crystal structures.

If the axial ratio c/a = r slightly deviates from the value s, for
which exact coincidence occurs as considered above, then the
normal to the twin mirror plane (2kl) no longer coincides with
the 180° rotation axis [uvw] but deviates from it by a small
angle §, called the obliquity. One then speaks of twinning by
reticular (for ¥ > 1) pseudo-merohedry (Friedel, 1926). Notice
that for § > 0 the mirror reflection in (hk/) and the 180°
rotation about [uvw] no longer describe exactly the same
misorientation of the two lattices.

Whereas for reticular merohedry the two lattices possess
coincident cells M1 and M2 with volumes ¥ times larger than
the volume of a primitive cell, the two cells are only
approximately coincident in the case of reticular pseudo-
merohedry. Bonnet & Durand (1975) described the mapping
A that maps M1 onto M2 as a product A = R,D, where R, is a
rotation and D a pure deformation, which can be character-
ized by its principal strains ¢; < &, < ¢;. Bonnet & Cousineau
(1977) found for hexagonal twins that the principal strains
have the form &, = —¢, &, = 0, &5 = ¢ (pure shear) if & << 1.
Grimmer & Bonnet (1990) showed that, considering terms up
to first order in &,

(i) R, is the identity,

(ii) the relations &, = —e¢, &, = 0, &3 = ¢ are true for all
optically uniaxial crystals,

(iii) € is a product of two factors; one is determined by the
misorientation of the two lattices, the other by the relative
deviation of the axial ratio r from s,

s —r|
= sin .

P
In this paper, it will be shown that the obliquity § satisfies
[ = 7|

rs

tand = sin ®,

and thus is related to the deformation parameter ¢ by

s+r
€.
2s

tand =

If r is close to s, then the factor (s + r)/2s is close to 1, so that
tand ~~ ¢. The expressions for ¢ and tand in terms of sin ® are
of importance if one wants to extend all twin laws by reticular
merohedry to reticular pseudo-merohedry with ¢ or § less than
a given upper limit, because the value of sin ® determines how
far s may deviate from the axial ratio r of the crystal under
consideration.

In many instances, the angle ® is equal to the rotation angle
O® of the representative rotation R. More specifically, this is
the case if R = R is a rotation about an axis perpendicular to
the principal axis, i.e. the representative integer quadruple
(m, U, V, W) has W = 0 [for definition see below equation (8)].
This applies to all specific misorientations of hexagonal lattices
with ¥ < 7 and to most specific misorientations of tetragonal
lattices with ¥ < 5, for which the angle ® has been listed by
Grimmer (1989b, 2003). The tetragonal cases with ® # ©® and
all rhombohedral ones with ¥ < 5 will be listed in this paper.

In §2, the above relations for § will be derived and illu-
strated with the example of the (301) twin in metallic tin. In
the subsequent three sections, the situation will be reviewed
for hexagonal, rhombohedral and tetragonal lattices, respec-
tively.

2. Connection between the obliquity ¢ and the
deformation parameter ¢

The angle between the normal to the crystal plane (hkl) and
the crystal direction [uvw] is called the obliquity §. Friedel
(1926) gave a formula for § valid for an arbitrary basis a, b, c,
a, B, y, which was reproduced by Donnay & Donnay (1972). If
o = B =90° and a = b (which includes conventional tetragonal
and hexagonal bases), it reads

(uh + vk + wi)* W + V' cosy)
(uh + vk +wl)Wh+vk+wl) h(u+vcosy)
(la)

cos’§ =

Here the primed indices are given by
(WKT)=w+vcosy v4ucosy wc*/a) (1b)
and
[W'vw]=[h—kcosy k—hcosy Isin®ya*/c*]. (l¢)

Note that (#'k'l') is the plane normal to [uvw], and [u'v'w'] is
the direction normal to (hkl). In the tetragonal case (y = 90°),
equation (1) simplifies to

h + vk + wi)*
cos’ § = w 2+V + W) TN 2)
(W +v2 +Swh(h* + k> + % 17)
and, in the hexagonal case (y = 120°), to
h + vk + wi)’
cos’ 8 = (wh 1 vk + wl) 3)

W —uv + 2+ Sw)E(h? + hk + K2) + 5 2]

Consider a case of reticular merohedry with axial ratio c/a = s
such that s is a rational number, where the two individuals of
the twin are related by a specific coincidence misorientation.
This may be described by the twin mirror plane (hkl) or,
alternatively, by the 180° rotation with axis [uvw] perpendi-
cular to (hkl), where all six components 4, k, [ and u, v, w are
integers. Per definition, the obliquity is zero between (hkl) and
[uvw] for the axial ratio s.

With the indices A, k, [ and u, v, w fixed, the obliquity will
deviate from zero if the axial ratio c/a = r is different from s.
With indices [uvw] set equal to [u'v'w'] = [hkl/s*] for a
tetragonal or [u/v'w'] = [2h + k h + 2k 31/(2s%)] for a hexag-
onal basis, respectively, the obliquity between (hkl) and [uvw]
for an arbitrary aspect ratio c/a = r results from

(H? + /sy
(H? + Pr2/s*)(H? 4+ B /1?)

(4)

cos’ 8 =

with H? = h”+ k” in the tetragonal and H* = 4/3(h* + hk + k%) in
the hexagonal case. Equivalently, it is given by
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_|s2—r2| .

sin @,

®)

where ¢/2 = arctan(Hs/[) is the angle between the normal
[/v'W'] of the plane (hkl) and the principal crystal axis of
either twin individual for the specific axial ratio c¢/a = s. Since
the lattices of both twin individuals are transferred into each
other by a mirror operation on the twinning plane (hk/), their
principal axes include the angle ¢ in total.

Let R be the reduced rotation representing twinning at the
plane (hkl), i.e. R is symmetrically equivalent to a 180° rota-
tion about the direction [#'v'w'] normal to the twinning plane
(hkl). The decomposition R(®) = R, (®)R(¥) from §1, where
® < 90° is the angle between the principal symmetry axes of
the two individuals, shows that the angle ¢ of (5) is equal to
either @ or 180° — ®. It follows that sin¢ may be replaced by
sin® in (5) and that

s 1—cos?87"? ‘s r‘ His
an = |— = |-——- =
cos? § r sIH*s? 4+ 2 2rs

s+r|s—r| . s+r
tan§ = l |smCI>: g,
r 2s

©)

where

|s — ]

sin ® @)
,

is the deformation parameter as defined by Grimmer &
Bonnet (1990).

In other words, by changing the axial ratio from s to r, the
angle ®/2 of the principal axis to the normal of (hkl) [or to
(hkl) if ¢ > 90°] becomes « with tan « = (s/r) tan(®d/2), and the
angle ®/2 of the direction [uvw] to the principal axis [or the
plane (001) if ¢ > 90°] becomes B with tan 8 = (r/s) tan(®d/2),
so that

tand =tan|lo — | = ———= =3

s r [
|;—;|tan7_1‘£
1+tan?e 2

.
— —|sin ®,
ro s

which is equivalent to (6).

Z
)

i
DAV
/ /
&

[101]

90°

o
P = X

S \
(301)
Figure 1

Example of twinning by reticular merohedry with £ = 2 of a tetragonal
lattice with c/a = 1/+/3. The 60° rotation ® maps the black lattice 1 onto
the red lattice 2; o« = B = ®/2. The twin mirror plane is (301), its normal is
[101].

Consider as an example the tetragonal lattice with axial
ratio s = c¢/a = 1/+/3. The rotation R by © = 60° about the b
axis defines a twin law by reticular merohedry with X =2 (and
& = 0). Because b is perpendicular to the principal axis ¢, we
have R; = R and ® = ® = 60° (see Fig. 1). The twin law is
usually expressed by the twin mirror plane (301) or the 180°
rotation with axis [101]. It follows that tan(¢/2) = Hs/l = /3,
whence ¢ = 120° = 180° — &.

Metallic tin (8-Sn) has a body-centred tetragonal lattice
with axial ratio r = 0.5477 =~ /0.3, which is close to s = 1/«/— =
0.5774. For the axial ratio r, the axis [101] is no longer exactly
perpendicular to the plane (301), i.e. the obliquity no longer
vanishes, as shown in Fig. 2.

Fig. 2 shows that the obliquity can be expressed as é =
lo — Bl; with tana = 1/3r = 1/4/2.7 and tan B = r = 4/0.3, it
gives

tano —tan 8 1

tan § = tan(tla — B|) = I+ tnatnf 430"

The same result is obtained using (2) with (hkl) = (301),
[uvw] = [101] and #* = ¢*/a* = 0.3,

480 1—cos28]”* 1
cos28:—:>tan8:|: cos :| :4

, §=2.613°
481 cos? 8 /30

3. Hexagonal lattices

Given a conventional hexagonal coordinate system with axes ¢
and a, we denote by the quadruple (m, U, V, W) of coprime
integers (i.e. integers without a common divisor) a rotation
with axis [UVW] and angle

-
ZSTAN

L b i

/f)
/
7,
e}

If' / o %
\_-

(30 1)

a

/)
/
[101]

Figure 2

The (301) twin in B-Sn provides an example of twinning by reticular
pseudo-merohedry. The 60° rotation ® maps the black lattices onto the
red ones. The lattices of the twin in 8-Sn are shown by bold lines; the thin
lines repeat the lattices of Fig. 1. The angle y between [101] and the twin
mirror plane (301) in -Snis y =90°— § =90° + 8 — .
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Table 1
Specific misorientations of hexagonal lattices with £ < 5.

Twin mirror Twin mirror Descriptions by

5% = plv Representative plane 1 plane 2 rotations with angle

z s =cla n v w (m, U, V, W) cos® = cos P 0= (%) (hkl) [uvw] (hkl) [uvw] 60° 90° 120°
2 0.5 1 4 3 2210 0 90 111 112 111 112 X

0.8660 3 4 3 2300 0 90 101 212 101 212 X

1 1 1 3 1210 0 90 112 111 112 111 X

1.7321 3 1 3 1300 0 90 102 211 102 211 X
3 0.3536 1 8 6 4210 1/3 70.5288 111 114 221 112 x x

0.6124 3 8 6 4300 1/3 70.5288 101 214 201 21 2 X X

0.7071 1 2 6 2210 1/3 70.5288 112 112 111 111 X X

1.2247 3 2 6 2300 1/3 70.5288 102 212 101 211 X X

1.4142 2 1 6 1210 1/3 70.5288 112 221 114 111 X X

2.4495 6 1 6 1300 1/3 70.5288 102 421 104 211 X X
4 0.25 1 16 3 4210 0 90 221 114 221 114:1 X

0.2887 1 12 6 6210 12 60 111 116 331 112 x x

0.4330 3 16 3 4300 0 90 201 214 201 214 X

0.5 1 4 6 2100 172 60 101 216 301 212 X X

0.5774 1 3 6 3210 172 60 112 113 332 111 X X

0.8660 3 4 6 2210 172 60 111 332 113 112 X X

1 1 1 6 1100 172 60 102 213 302 211 X X

L5 9 4 6 2300 12 60 101 632 103 212 x x

1.7321 3 1 6 1210 172 60 112 331 116 111 X X

2 4 1 3 1420 0 90 114 221 114 221 X

3 9 1 6 1300 172 60 102 631 106 211 X X

3.4641 12 1 3 1600 0 90 104 421 104 421 X
5 0.2041 1 24 6 6210 1/5 78.4630 221 116 331 114

0.25 1 16 6 8210 3/5 53.1301 111 118 441 112

0.3536 1 8 6 2100 1/5 78.4630 201 216 301 214

0.4082 1 6 6 3210 1/5 78.4630 111 113 332 112

0.4330 3 16 6 8300 3/5 53.1301 101 218 401 212

0.5 1 4 6 4210 3/5 53.1301 112 114 221 111

0.6124 3 8 6 2210 1/5 78.4630 111 334 223 112

0.7071 1 2 6 1100 1/5 78.4630 101 213 302 212

0.8165 2 3 6 3420 1/5 78.4630 112 223 334 111

0.8660 3 4 6 4300 3/5 53.1301 102 214 201 211

1 1 1 6 2210 3/5 53.1301 111 221 114 112

1.0607 9 8 6 2300 1/5 78.4630 101 634 203 212

1.2247 3 2 6 1210 1/5 78.4630 112 332 113 111

1.4142 2 1 6 1200 s 78.4630 102 423 304 211

1.7321 3 1 6 2300 3/5 53.1301 101 421 104 212

2 4 1 6 1210 3/5 53.1301 112 441 118 111

2.1213 9 2 6 1300 1/5 78.4630 102 632 103 211

2.4495 6 1 6 1420 1/5 78.4630 114 331 116 221

3.4641 12 1 6 1300 3/5 53.1301 102 841 108 211

4.2426 18 1 6 1600 1/5 78.4630 104 631 106 421

1 [2(U? — UV + V?) + w2 the order of increasing s = c/a. The rational value of s is given
® =2arctan) — |: 302 i| ®) as p/v. The number of different quadruples of coprime inte-

The angle ® has the same sign as m; the rotation is anti-
clockwise for m > 0 and clockwise for m < 0. In general, there
are 12 x 24 rotations that describe the same misorientation of
two congruent hexagonal lattices. The number of actually
different rotations can be written as 12w, where w is a divisor
of 24 (Grimmer, 1980; Grimmer & Warrington, 1987). Because
+(m, U, V, W) describe the same rotation (both axis and angle
change sign), there are 24w different quadruples.

Grimmer (19890) determined for primitive hexagonal
lattices all the twin laws by reticular merohedry with ¥ < 7
that correspond to specific misorientations. We list in Table 1
the cases with ¥ < 5 in a form better suited to compute the
obliquity according to equation (3). The misorientations
appear in the order of increasing ¥ values and, for fixed Z, in

gers describing the misorientation is 24w, of which only one is
listed: the representative quadruple, which describes a rota-
tion with minimum rotation angle and satisfies m >0, U > 2V >
0, W > 0 (Grimmer & Warrington, 1987). Table 1 shows that
W = 0 holds for all the representative quadruples with ¥ < 5,
whence ® = ©." From among the rotations that describe the
same misorientation, we listed two 180° rotations with
mutually perpendicular axes [uvw] satisfying 2v > u > v > 0
and w > 0 in the first, w < 0 in the second case. The planes
normal to [uvw] are called twin mirror planes and have Miller
indices (hkl) satisfying 4 > k > 0 and / > 0 in the first, / < 0 in

! Note that the quadruple {M u v . w} used in Grimmer (1989b) is based on
4-index Weber notation and is proportional to {3m U+V U—2V. 3W}. Those
quadruple components uvw are not identical to the indices [uvw] used here for
the axis normal to the twin mirror plane.

Acta Cryst. (2004). A60, 220—232
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Table 2
Obliquities § < 6° for twin laws with ¥ < 8 in quartz.

For the twin laws within parentheses, the twin plane/twin axis pairs 1 and 2 must be exchanged and the signs of all four third components (/;, wy, L, w,) reversed.
Rows marked A in the last column were discussed by Friedel (1923) on page 90; those marked B were mentioned on page 92 as giving previous solutions with a

larger twin index X; the one marked 0 was not discussed at all.

Twin mirror plane 1

Twin mirror plane 2

K 5* x (hkl) [uvw] (hkl) [uvw] 0= (%) 8 (°) Twin laws

1 1 2 112 111 112 111 90 5.4526 Japan A
4 102 213 302 211 60 4.7257 Sardinian (Belowda) B
5 111 221 114 112 53.1301 4.3668 Breithaupt A
7 101 423 304 212 81.7868 5.3970 Esterel B
8 412 321 ® = 41.4096 3.6127 A

) ) © = 46.5674

1.0607 918 5 101 634 203 212 78.4630 2.0441 Esterel B
7 201 632 103 214 44.4153 1.4603 Cornish A

1.0954 6/5 7 102 425 504 211 64.6231 0.2148 Sardinian B

1.1180 5/4 6 111 552 115 112 48.1897 0.6945 Breithaupt B
8 101 1056 305 212 75.5225 0.9021 Esterel B

1.1547 4/3 7 112 443 338 111 81.7868 2.7511 Japan B
8 114 223 334 221 60 2.4076 B

1.2247 3/2 3 101 211 10 2 21 2 70.5288 5.7942 Esterel (Sardinian) A
7 111 331 116 112 44.4153 4.3077 0

the second case. This choice guarantees that [uvw]; lies in the
plane (hkl), and [uvw], in (hkl),. Neither the integers 4, k, [
nor the integers u, v, w have a common divisor. If we define S =
hu + kv + lw, the multiplicity (twin index) becomes ¥ = S if S is
odd, ¥ = §/2 if S is even (Friedel, 1926; Donnay & Donnay,
1972).

Certain twin laws are usually expressed by rotations of
(approximately) 60, 90 or 120° about a crystallographic axis
(see e.g. Friedel, 1926). The last columns in Table 1 show which
specific misorientations with ¥ < 5 have such (exact)
descriptions: 90° descriptions exist in all cases with cos® = 0.
(Note that one of these is also the representative rotation with
axis either [100] or [210].) 90 and 120° descriptions exist in all
cases with cos® = 1/3; 60 and 120° descriptions in all cases
with cos® = 1/2. (The representative rotations for the latter
give 60° descriptions with axis either [100] or [210].) Note that
all misorientations listed in Table 1 can be described also by
180° rotations about the directions [uvw].

Two hexagonal lattices with axial ratios s; and s, satisfying
(515,)% = 3/4 will be called pseudo-reciprocal because primitive
bases e; in lattice 1 and f; in lattice 2,i =1, 2, 3, can be defined
that satisfy e;-f; = k§;, where k is a constant of dimension
length squared. Table 1 shows that to each misorientation of a
hexagonal lattice with a given value of ¥ there corresponds a
related misorientation of its pseudo-reciprocal lattice with the
same X value. This is illustrated in Fig. 3.

Consider quartz as an example. It has a hexagonal lattice
with axial ratio r = 1.1 at ambient temperature and pressure.
Friedel (1923) discussed twin laws in quartz satisfying ¥ < 8
and § < 6°. From Table 1 extended to ¥ < 8 the possibilities
listed in Table 2 are obtained.

Several of the twin mirror planes (/kl) given in Table 2 have
been observed in high-quartz by Drugman (1927, 1930). These
are the Japan (Verespatak) (112), Esterel (101), Sardinian
(102), Belowda (302), Cornish (201) and Breithaupt (111)
laws. Mallard’s criterion (X < 5, § < 6°) associates particularly

low twin indices ¥ = 3 to the Esterel law and ¥ = 2 to the
Japan (Verespatak) law, most common in high-quartz
(Frondel, 1962), and explains in addition to these and the
Sardinian law also the Belowda and Breithaupt laws (which
were actually observed in high-quartz only after 1923). The
conclusion by Friedel (1923) that ¥ < 5, § < 6° is sufficient to
explain the twin laws observed in high-quartz seems ques-
tionable in view of further laws observed by Drugman (1927),
i.e. Cornish (201), Wheal Coates (211), Pierre-Levée (213) and
Zinnwald, of which only the Cornish law (u/v=9/8, £ =7,8=
1.4603°) appears in Table 2. The lowest twin indices with § < 6°
are ¥ =15 (u/v =3/2, 6 = 3.0735°) for Wheal Coates and X =
13 (/v = 9/8, § = 2.0800°) for Pierre-Levée. Friedel (1933)
mentioned the additional twin laws found by Drugman (1927,
1930) but did not examine them from the point of view of
Mallard’s criterion. He only discussed the Zinnwald law in

L i
_s'=34 hP
2k . . o
2 T : 1
2]
4 - . = . " . . . . " . . . -
5+ . . . - . . - . -
- T = : === T -
1k scl +cP «cF hR -
4 _
_s'=914
2 - - .. -
x i - . -
3]
4 - . - - - - - o
5lese . . . - 4 = s - . Ty
1 1 L 1 1 ' 1 1
=15 1.0 0.5 0.0 05 1.0 15 20
log(uhv) = log(s’)
Figure 3

Specific misorientations of primitive (#P) and rhombohedrally centred
(hR) hexagonal lattices with multiplicity (twin index) ¥ < 5 as a function
of the axial ratio s.
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detail and concluded that this law cannot be explained by
Mallard’s criterion. We shall come back to this in §6.

The output from the program OBLIQUE (available at
http://ylp.icpet.nrc.ca/oblique/) by Le Page (2002), carried out
for hP with c/a = 1.1, ¥ < 8 and § < 6°, contains the following

Table 3
Additional solutions obtained with program OBLIQUE of Le Page
(2002) for hP with axial ratio r = 1.1 (quartz) that satisfy ¥ <8 and 6 < 6°.

Only the solution in bold was discussed by Friedel (1923). Further solutions,
which are missed by OBLIQUE, are given with indices I’ < 0 and w’ < 0.

Additional solutions from OBLIQUE Further solutions

z (hkl) [uvw] 5(°) WK'T) [W'v'w]
4 101 533 5.3241 )

5 551 110 5.1944 001 1110
6 211 431 2.9037 )

6 661 110 43323 001 1112
6 53126 101 745
6 750 110 5.4964

6 5.4964 100 1270
6 327 111 5.7938 )

7 771 110 3.7153 001 1114
7 42451 101 955
7 430 110 47150

7 47150 100 740
7 1014 001 5.1841 100 1471
7 861 110 5.9926 )

8 881 110 3.2519 001 1116
8 439 111 3.5203

8 970 110 41278

8 4.1278 100 1690
8 1016 001 4.5389 100 1681
8 4.6930 201 742
8 311 431 5.1142

8 971 110 5.2480 )

8 801 210 5.6205 001 2116

Table 4

Twin mirror planes observed in deformation twins of h.c.p. metals.

r is the experimentally determined value of the axial ratio.

Element Be Ti Zr Re Mg Co
Axial ratio, r 1.568 1.587 1.593 1.615 1.623 1.623
(101) X

(102) X X X X X X
(103) X

(111) X X X X
(112) X X

(113) X

Table 5

solutions: (a) the trivial solution corresponding to the
symmetry operations of AP, (b) the common coincidence
misorientation with X = 7, (¢) all the 14 solutions in Table 2
with § < 6°, (d) 17 additional solutions that do not correspond
to [uvw] L (hkl) in an AP lattice with an appropriate value of
cla (collected in Table 3).

The further solutions listed in Table 3 were obtained by
examining the output of OBLIQUE for the pseudo-reciprocal
lattice. These solutions show that OBLIQUE generally does
not give all solutions up to the chosen maximum values of X
and §. The main reason why OBLIQUE misses some solutions
seems to be the circumstance that it does not treat [uvw] and
(hkl) on an equal footing in contrast to their entries in the
formulas for ¥ and &, which is compensated here by consid-
ering also the solutions for the pseudo-reciprocal lattice. We
did not investigate whether this suffices for obtaining all
solutions in cases that are not related to reticular merohedry.

In 12 of the 17 solutions from OBLIQUE listed in Table 3
(all those with [uvw] = [110], [210] or [001]), [uvw] describes
the rotation axis of a twofold symmetry of high-quartz,
whereas the corresponding (hkl) is a mirror plane slightly
inclined to a symmetry plane of the AP lattice. Those mirror
planes have large indices and were hardly ever observed in
high-quartz twins. Among the mirror planes (kk/) in the five
remaining solutions from OBLIQUE, (101) corresponds to
Esterel twins and (211) to Wheal Coates twins. The former
appears already in Table 2 with ¥ = 3. Similarly, in ten of the
13 further solutions [all those with (A'k'l') = (100) or (001)]
(W'K'l') gives X > 1 descriptions of the ¥ = 1 merohedral twin,
two others describe the Esterel twin and one the Cornish twin,
all with larger values of ¥ than the descriptions with lowest X
value given in Table 2. The axes [u'v'w’] of 180° rotations have
large indices in all 13 cases and were never observed in high-
quartz twins. The additional solutions given in Table 3 were all
but one neglected also by Friedel (1923). Whereas it seems
doubtful whether they play a role in the description of growth
twins from twinned nuclei, it will be shown that such solutions
may be important to describe deformation twins.

Consider deformation twins in the h.c.p. metals Be, Ti, Zr,
Re, Mg and Co as an example. According to Rosenbaum
(1964) and Hagege (1989), the twin mirror planes listed in
Table 4 have been observed.

Table 5 gives the obliquities obtained for those twin laws
from Table 1 that have c/a close to the values r of Table 4.

Obliquities § < 6° for twin laws with ¥ < 5 in h.c.p. metals (Mallard’s criterion).

The solutions corresponding to observed twin laws are in bold.

Obliquity & () for r =

Twin mirror plane 1 Twin mirror plane 2 1.568 1.587 1.593 1.615 1.623 1.623
s 2 (hkl) [uvw] (hkl) [uvw] 0= (%) Be Ti Zr Re Mg Co
1.4142 3 112 221 114 111 70.5288 5.569
5 102 423 304 211 78.4630 5.786
1.5 4 101 632 103 212 60 2.200 2.797 2.984 3.664 3.909 3.909
1.7321 2 102 211 102 211 90 5.692 5.005 4.789 4.006 3.723 3.723
4 112 331 116 111 60 4.933 4.337 4.150 3471 3.226 3.226
5 101 421 104 212 53.1301 4.559 4.007 3.835 3.207 2.980 2.980
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Table 6

Additional solutions obtained with program OBLIQUE of Le Page
(2002) for hP with r = 1.593 that satisfy either ¥ =1, § < 18° or Mallard’s
criterion X < 5,8 < 6°.

The quasi-normal pair 2 is missing in the output of OBLIQUE.

Quasi-normal pair 1 Quasi-normal pair 2

Obliquity § (°)

)y (hkl), [uvw], (hkl), [uvw], for r = 1.593
1 111 110 001 112 17.426
3 331 110 001 116 5973
4 441 110 001 118 4.487
5 551 110 001 1110 3592

Table 4 shows that twins with mirror plane (102) have been
observed in all the h.c.p. metals considered. This law satisfies
Mallard’s criterion with a low twin index ¥ = 2 and obliquities
3.7 < 8§ < 5.7°. It has the particular property that twin laws 1
and 2 are symmetrically equivalent formulations. In the case of
Be, Table 5 contains a second description satisfying the
Mallard limits; it confirms (102) and [211] as possible twin laws
and suggests (304) and [423] as less likely ones because X and
6 are larger in this description than in the first one.

Twins with mirror plane (111) were observed in four of the
six metals listed in Table 4. They do not satisfy the Mallard
criterion according to Table 5. Also the (113) twin reported in
Zr does not satisfy the Mallard criterion.

The output of the program OBLIQUE by Le Page (2002),
carried out for AP with c/a = 1.593 (axial ratio of Zr), ¥ <5
and § < 6°, contains the following solutions: (a) the trivial
solution corresponding to the symmetry operations of 4P, (b)
all the solutions for Zr in Table 5, (c) three additional solutions
that do not correspond to [uvw] L (hkl) in an AP lattice with
an appropriate value of c/a (collected in Table 6).

Note that, in all four cases in Table 6, [uvw]; = [110] is the
axis of a 180° symmetry rotation of the AP lattice, which is
perpendicular to its symmetry plane (110), similarly (hk/), =

T]E:[u v W]1 11'2
n
|
S=nyx N2
'("\Lw
N ] nHuvw,
q
0
A=14Y),
K xK,LS

Figure 4

Definition of planes and directions for deformation twins. K is the twin
habit plane, K, the second plane that is not distorted by the twinning
shear; n is normal to K;; S is normal to K, and K, and is called the plane of
shear. The twinning shear g = 2tand is in the direction of n; and maps 7,
onto 75.

Table 7
Obliquities for some common deformation twins in h.c.p. metals
calculated for the observed twinning shear.

Obliquity 6 (°) for

T K s K> m Ti(r =1.587)  Zr (r =1593)
2 102 211 102 211 5005 4789
1 111 110 1 112 17488 17.426
3 112 221 114 111 6216 6.419

(001) is a symmetry plane of the AP lattice, which is perpen-
dicular to the axis [001] of one of its 180° symmetry rotations.

The solutions with the lowest X values for each of the three
values of s (i.e. the first, third and fourth rows in Table 5)
correspond to deformation twin systems as described by Yoo
(1981) (the third, second and first system, respectively, in his
Table 4), when the following entities are identified (see also
Fig. 4):

(hkl); < K, (twin habit plane)
(hkl), < K, (second undistorted plane)
[uww], < n (glide direction)
[uvw], <, €
Y <« q/2 (X = twin index)
8§ <> arctan(g/2) (g = twinning shear)
o<y (axial ratio)

These correspondences show that the twin system with K; =
(111) in Yoo’s Table 4 corresponds to the solution in our
Table 6 with ¥ =1 and § = 17.426°. We note that deformation
twins always correspond to pseudo-merohedry because the
twinning shear g = 2tan§, which is responsible for strain relief,
vanishes if § = 0. Even values of § much larger than allowed by
Mallard’s criterion may occur for deformation twins, which are
commonly characterized by a very low index ¥. Examples are
shown in Table 7, where the obliquities for Ti and Zr are listed
for the most common deformation twins in h.c.p. metals (cf.
Table 4 and Fig. 4 in Yoo, 1981).

4. Rhombohedral lattices

In contrast to primitive hexagonal lattices (2P), where ® = ©
in all cases with ¥ < 7, we have ® < © in most cases of
rhombohedral lattices (kR), even for low values of X. The
cases with X < 5 are listed in Tables 8 and 9. There are in
general 6 x 12 rotations that describe a given misorientation
of two congruent /R lattices, of which 6w are actually different
(Grimmer, 1980, 1989a). Whereas in Grimmer (1989a) the
quadruple (m, U, V, W) referred to rhombohedral axes, we use
in the present paper the same conventional hexagonal coor-
dinate system with three coordinate axes for AP and hR
lattices and write ¢*/a®> = p/v (as for primitive hexagonal
lattices) instead of ¢*/a® = 3uu/(2u — 6v). The representative
quadruple (m, U, V, W) describes a rotation with minimum
rotation angle given by equation (8) and satisfies m > 0, 2U >
V> %U >0, W > 0. It is listed in Tables 8 and 9 together with
cos®, cos® and ®. From among the rotations that describe
the same misorientation, we list two 180° rotations with
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Table 8

Specific misorientations of rhombohedral lattices with ¥ < 4.

Descriptions by

s* = v Representative Twin mirror plane 1 Twin mirror plane 2 rotations with angle
Y  s=cla " v o (mUV,W) cos® cos® D (°) (hkl) [uvw] (hkl) [uvw] 60° 90° 120°
1 0.6124 3 8§ 3 2122 0 13 705288 101 214 201 212 x x
1.2247 3 2 3 1211 0 13 705288 012 122 011 121 X X
2.4495 6 1 3 1241 0 1/3 70.5288 012 241 014 121 X X
2 0.3062 3 32 3 4214 0 13 705288 021 128 041 124 X X
0.3873 3 20 3 5125 1/4 2/3 481897 101 2110 501 212
0.7746 3 5 3 5425 1/4 2/3 481897 012 125 052 121
0.8660 3 4 3 1121 —1/4 0 9 101 636 303 212
1.7321 3 1 3 1241 —1/4 0 90 012 363 036 121
1.9365 15 4 3 1211 1/4 2/3 481897 101 1052 105 212
3.8730 15 1 3 1241 1/4 2/3 481897 012 5101 0110 121
4.8990 24 1 3 1841 0 1/3 705288 104 841 108 421 X X
3 0.1936 3 80 3 5125 —1/6 1/9 836206 401 2110 501 218
0.2315 3 56 3 7217 1/6 519 562510 021 1214 071 124
0.3062 3 32 3 8128 2/6 7/9 389424 101 2116 801 212
0.3873 3 20 3 5425 —1/6 1/9 836206 021 125 052 124
0.4629 3 14 3 7247 1/6 5/9 562510 101 217 702 212
0.6124 3 8§ 6 3211 3/6 59 562510 211 544 ~ B X
3 4214 2/6 7/9 389424 012 128 041 121
6 4330 2/6 3/9  70.5288 ~ ~
0.7746 3 5 3 5485 —1/6 1/9 836206 101 425 504 212
0.9258 6 7 3 7847 1/6 5/9 562510 012 247 074 121
0.9682 15 16 3 1211 —1/6 1/9 836206 101 1058 405 212
1.2247 3 2 6 3241 3/6 519 562510 122 452 ~ ~ X
3 2122 2/6 7/9 38.9424 021 241 014 124
6 2330 2/6 3/9 705288 ~ ~
1.5492 12 5 3 51685 —1/6 1/9 836206 012 485 058 121
1.6202 21 8 3 1211 1/6 5/9 56.2510 101 1474 2 0? 212
1.9365 15 4 3 1241 —1/6 1/9 83.6206 012 5104 025 12
2.4495 6 1 6 3841 3/6 519 562510 214 541 ~ ~ X
3 1211 2/6 719 389424 101 841 108 212
6 1330 2/6 3/9  70.5288 ~ ~
3.2404 21 2 3 1241 1/6 519 562510 012 7142 017 121
3.8730 15 1 3 1841 —1/6 1/9 836206 104 1052 105 421
4.8990 24 1 3 1241 2/6 719 389424 012 8161 0116 121
6.4807 42 1 3 1841 1/6 519 562510 104 1471 1014 421
7.7460 60 1 3 18161 —1/6 1/9 836206 018 5101 0110 481
4 0.1464 3 140 3 7217 —1/8 1/6 804059 051 1214 071 1210
0.1531 3 128 3 8128 0 2/6 705288 401 2116 801 218 X X
0.1936 3 80 3 102110 2/8 4/6 481897 021 1220 0101 124
0.2611 3 4 3 111211 3/8 5/6 335573 101 2122 101 212
0.2928 3 35 3 7247 —1/8 1/6 804059 502 217 702 215
0.3873 3 20 6 3211 1/8 1/6 804059 211 5410 ~ ~ X
0.4330 3 16 3 2122 —2/8 0 9 021 3612 063 124
0.5 1 4 3 3123 1/8 3/6 60 101 6318 903 212
0.5222 3 1 3 114211 3/8 5/6 335573 012 1211 0112 121
0.7319 15 28 3 75107 —1/8 1/6 804059 101 105 14 705 212
0.7746 3 5 6 3241 1/8 1/6 804059 122 455 X
0.8660 3 4 6 1111 1/8 3/6 60 113 336 ~ ~ X
0.9682 15 16 3 2122 2/8 4/6 481897 021 5104 025 124
1 1 1 3 3423 1/8 3/6 60 012 369 096 121
1.0247 21 20 3 1211 —1/8 1/6 80.4059 101 14710 507 212
1.4639 15 7 3 720107 —1/8 1/6 804059 012 5107 0710 121
15 9 4 3 1211 1/8 36 60 101 1896 309 212
1.5492 12 5 3 5485 2/8 4/6 481897 104 425 504 421
1.7321 3 1 6 1221 1/8 3/6 60 116 333 X
1.9365 15 4 6 35101 1/8 1/6 804059 125 452 ~ X
2.0494 21 5 3 1241 —1/8 1/6 804059 012 7145 0514 121
2.8723 33 4 3 1211 3/8 5/6 335573 101 22112 1011 212
3 9 1 3 1241 1/8 36 60 012 9183 0318 121
3.4641 12 1 3 1481 —2/8 0 90 104 1263 3012 421
3.8730 15 1 6 320101 1/8 1/6 804059 2110 541 ~ ~ X
5.1235 105 4 3 15101 —1/8 1/6 80.4059 015 7142 017 5102
5.7446 33 1 3 1241 3/8 S5/6 335573 012 11221 0122 121
7.7460 60 1 3 1841 2/8 4/6 481897 104 20101 1020 421
9.7980 96 1 3 18161 0 2/6 705288 018 8161 0116 481 X X
10.247 105 1 3 120101 —1/8 1/6 804059 1010 1471 1014 1051
Acta Cryst. (2004). A60, 220-232 Grimmer and Kunze - Twinning by reticular pseudo-merohedry 227



research papers

Table 9
Specific misorientations of rhombohedral lattices with ¥ = 5.

Descriptions

§*= ulv Representative Twin mirror plane 1 Twin mirror plane 2 by rotations
s=cla % v 10} (m, U, V, W) cos © cos @ D (°) (hkl) [uvw] (hkl) [uvw] 90° 120°
0.1157 3 224 3 8128 —2/10 1/15 86.1774 701 2116 80 T_ 2114
0.1225 3 200 3 102110 0 5/15 70.5288 051 1220 0101 12 TO X X
0.1306 3 176 3 111211 1/10 7/15 62.1819 401 2122 101 218
0.1698 3 104 3 132113 3/10 11/15 42.8334 021 1226 0131 124
0.2315 3 56 3 141214 4/10 13/15 29.9265 101 2128 1401 212
3 4214 —2/10 1/15 86.1774 401 217 702 218
0.2449 3 50 3 5125 0 5/15 70.5288 502 2110 501 215 X X
0.2611 3 44 3 114211 1/10 715 62.1819 021 1211 0112 124
0.3062 3 32 6 3211 —1/10 —1/15 93.8226 211 5416 ~ ~
0.3397 3 26 3 132413 3/10 11/15 42.8334 101 2113 1302 212
0.3536 1 8 3 3213 —1/10 3/15 78.4630 021 3618 093 124
0.4330 3 16 3 4214 2/10 9/15 53.1301 033 128 041 366
3 4124 2/10 9/15 53.1301 101 6324 1203 212
0.4629 3 14 3 7217 4/10 13/15 29.9265 012 1214 071 121
3 2122 —2/10 1/15 86.1774 021 247 074 124
0.4899 6 25 3 5425 0 515 70.5288 502 425 504 215 X X
0.5222 3 11 3 114811 1/10 7115 62.1819 101 4211 1104 212
0.6124 3 8 6 6122 8/10 13/15 29.9265 241 452
6 4122 6/10 11/15 42.8334 131 574
6 1111 —1/10 3/15 78.4630 223 336
6 3241 —1/10 —1/15 93.8226 122 458 ~ ~
0.6794 6 13 3 138413 3/10 11/15 42.8334 012 2413 0134 121
0.7071 1 2 3 3243 —1/10 3/15 78.4630 101 639 906 212
0.8101 21 32 3 87148 —2/10 1/15 86.1774 101 147 16 807 212
0.8660 3 4 3 2122 2/10 9/15 53.1301 306 214 201 633
3 2212 2/10 9/15 53.1301 012 3612 063 121
0.9258 6 7 3 7247 4/10 13/15 29.9265 104 217 702 421
3 1211 —2/10 115 86.1774 101 847 708 212
1.0445 12 11 3 1116 811 1/10 715 62.1819 012 4811 01138 121
1.0607 9 8 3 1211 —1/10 3/15 78.4630 101 18912 609 212
1.2247 3 2 6 3211 8/10 13/15 29.9265 211 541
6 2211 6/10 11/15 42.8334 312 752
6 1221 —1/10 3/15 78.4630 113 333
6 3841 —1/10 —1/15 93.8226 214 544 _
1.4142 2 1 3 3843 —1/10 3/15 78.4630 012 6129 0912 121
1.4361 33 16 3 1211 1/10 715 62.1819 101 22118 4011 212
1.6202 21 8 3 2122 4/10 13/15 29.9265 021 7142 017 124
3 41474 —2/10 1/15 86.1774 012 7148 047 121
1.7321 3 1 3 1211 2/10 9/15 53.1301 101 1263 30 1_2 212
3 1121 2/10 9/15 53.1301 033 241 014 366
1.8516 24 7 3 1241 —2/10 1/15 86.1774 012 8167 07 f6 121
21213 9 2 3 1241 —1/10 3/15 78.4630 012 9186 039 121
2.2079 39 8 3 1211 3/10 11/15 42.83 101 2613 4 2013 212
2.4495 6 1 6 3241 8/10 13/15 29.9265 122 8101
6 2241 6/10 11/15 42.8334 134 571
6 1441 —1/10 3/15 78.4630 116 663
6 38161 —1/10 —1/15 93.8226 128 452 ~
2.8723 33 4 3 1241 1/10 7115 62.1819 012 11224 02 1_1 121
3.0619 75 8 3 21052 0 515 70.5288 015 5104 025 5102 X X
3.2404 21 2 3 1211 4/10 13/15 29.9265 101 1471 1014 212
3 27142 —2/10 1/15 86.1774 104 1474 207 421
3.4641 12 1 3 1241 2/10 9/15 53.1301 012 12243 03 2_4 121
3 1421 2/10 9/15 53.1301 306 841 108 633
4.2426 18 1 3 1841 —1/10 3/15 78.4630 104 1893 3018 421
4.4159 39 2 3 1241 3/10 11/15 42.8334 012 13262 0113 121
4.8990 24 1 6 332161 —1/10 —1/15 93.8226 2116 541 ~
5.7446 33 1 3 1841 1/10 7115 62.1819 104 22112 1011 421
6.1237 75 2 3 15101 0 515 70.5288 015 5101 0110 5102 X X
6.4807 42 1 3 1241 4/10 13/15 29.9265 012 14281 0128 121
3 11471 —2/10 1/15 86.1774 018 7142 017 481
8.8318 78 1 3 1841 3/10 11/15 42.8334 104 26131 1026 421
11.489 132 1 3 18161 1/10 715 62.1819 018 11221 0122 481
12.247 150 1 3 120101 0 515 70.5288 1010 20101 1020 1051 X X
12.961 168 1 3 114281 -2/10 1/15 86.1774 0114 8161 0116 7141
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Table 10

Obliquities 6 < 6° for twin laws with £ < 5 in corundum and hematite.

The first solution describes basal twins; solutions describing rhombohedral twins are in bold. The row with s* = 15/2 refers to Grimmer (1989a).

Twin mirror plane 1

Twin mirror plane 2

Obliquity § (°)

s =cla s by (hkl) [uvw] (hkl) [uvw] cos @ D (°) Corundum Hematite
Any Any 3 003 003 030 360 12 60 0 0
2.4495 6 1 012 241 014 121 1/3 70.5288 5.8479 5.8873
3 214 541 B ~ 5/9 56.2510 5.1614 5.1962
3 101 841 108 212 7/9 38.9424 3.9062 3.9326
5 122 8101 13/15 29.9265 3.1022 3.1232
5 134 571 _ 11/15 42.8334 4.2240 4.2526
2.7386 152 7 012 15306 0315 121 377 64.6231 0.1631 0.1252
2.8723 33/4 4 101 22112 1011 212 5/6 33.5573 1.6093 1.5861
5 012 11224 0211 121 15 62.1819 2.5739 2.5368
3 9 4 012 9183 0318 121 3/6 60 4.6762 4.6399
3.2404 21/2 5 101 1471 1014 212 13/15 29.9265 4.9109 4.8898

mutually perpendicular axes [uvw] satisfying 2u > v > fu > 0
and w > 0 in the first, w < 0 in the second case. The planes (hk/)
normal to [uvw] are called twin mirror planes. Two such 180°
rotations with mutually perpendicular axes exist in all cases
with w = 3, one 180° rotation? occurs in most cases with w = 6,
none in three exceptional cases where W =0 (i.e. ® = ©). The
triplets (hkl) are normalized such that 4, k, [ are smallest
integers satisfying —h + k + [ = 3M, M integer; u, v, w are
smallest integers satisfying —u + v+ w =3Nand v — w = 3P,
N and P integers. These conditions guarantee that f[uvw] is a
smallest vector of the obversely centred AR lattice and (hkl) a
smallest vector of its reciprocal lattice. With S = 3(hu + kv +
Iw), the multiplicity (twin index) equals X = S if S is odd, ¥ =
S/2 if S is even (see Koch, 1999). The last columns in Tables 8
and 9 show which specific misorientations with ¥ < 5 can be
described exactly by 60, 90 or 120° rotations: 90 and 120°
descriptions exist in all cases with cos ® = 0; 60° descriptions in
all cases with cos ® = 1/2; 120° descriptions in all cases with w =
6 and cos ® = 1/8. The three exceptions (W = 0) can be
described neither by 60, 90, 120° nor by 180° rotations; thus
they do not correspond to twins.

Rhombohedral lattices with axial ratios s; and s, satisfying
518, = 3/2 will be called pseudo-reciprocal because they possess
primitive bases e; and f;, i =1, 2, 3, satisfying e;-f; = k§;;, where
k is a constant of dimension length squared. Tables 8 and 9
show that to each misorientation of a rhombohedral lattice
with a given value of ¥ there corresponds a related misor-
ientation of its pseudo-reciprocal lattice with the same value
of X. The three entries with ¥ = 1 in Table 8 correspond to the
special cases of cubic lattices: the rhombohedral lattice is
identical to cI for s* = 0.375, to ¢P for s> = 1.5, and to cF for s* =
6. The lattices cI and cF are pseudo-reciprocal to each other,
cP is pseudo-reciprocal to itself. This is illustrated in Fig. 3.

Consider as examples corundum («-Al,O;) and hematite
(a-Fe,05), which both have space group R3¢ with axial ratio
cla = 2.730 and 2.732, respectively. In both cases, the most
common twin besides the basal twin [twin mirror plane (001)]
is the rhombohedral twin [twin mirror plane (012)] (Bursill &

2 A similar situation occurs in Table 2, where the misorientation in the case of
s = 1 with ¥ = 8 cannot be described by a second 180° rotation with
perpendicular axis.

Withers, 1979). Table 10 gives the obliquities § < 6° for twin
laws of corundum and hematite corresponding to mis-
orientations with X < 5.

The first solution in Table 10 gives the common mis-
orientation with X = 3, which describes basal twins. The table
also gives possible descriptions of rhombohedral twins with
¥ =1,4,5and 7 (in bold). As s approaches the c/a ratio of the
two minerals, § decreases and X increases. Twins in corundum
and hematite were discussed from the coincidence site lattice
point of view by Grimmer (1989a), where a description with
¥ =7 (row with s> = 15/2 in Table 10) was proposed, which has
particularly low obliquity.

The output from the program OBLIQUE by Le Page
(2002), carried out for AR with ¢/a = 2.73, ¥ < 5 and § < 6°,
contains the following solutions: (a) the trivial solution
corresponding to the symmetry operations of AR, (b) the
solutions with ¥ < 5 for corundum of Table 10, (c) three
additional solutions that do not correspond to [uvw] L (hkl) in
an AR lattice with an appropriate value of c/a (collected in
Table 11).

1L B +CP -
s =1\ tP
2k P . e 4
3t . N { d
Hll
4t - e . . . - -
5L = . . . . . . . - 4
1+ . -cl «cF fl -
s =2
2t . \\ 4
3k . . 4
i
4t . .- cee e . e s ses .- . 4
5+ . . . . - - .. . . -
15 1.0 05 0.0 05 10 15
log(u/v) = log(s”)
Figure 5

Specific misorientations of primitive (¢P) and body-centred (¢]) tetragonal
lattices with multiplicity (twin index) ¥ < 5 as a function of the axial
ratio s.
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Table 11

Additional solutions obtained with program OBLIQUE for hR lattices
with r = 2.73 (corundum) and r = 2.732 (hematite) satisfying either X =1,
§ < 18° or Mallard’s criterion X < 5, § < 6°.

Further solutions, which are missed by OBLIQUE, are given with indices I’ <
0and w’' <0.

Additional solutions

from OBLIQUE Further solutions Obliquity § (°)

2 (hkl) [uvw] (WKT) [w'v'w] Corundum Hematite
1 003 122 01 i 360 17.6004 17.5883
4 401 630 003 218 4.5344 4.5311

5 051 360 003 1210 3.6303 3.6276
5 011 1527 30 3.8601 3.8710
5 327 541 5.3436 5.3687
Table 12

The specific misorientations of P and ¢/ lattices with ¥ < 5 that can be
described by 60, 90 or 120° rotations.

i=2X¥cos ® 10} 60° 90° 120°
i=0,ie.cos®=0 Any X X
i=2X/4,ie cos ®=1/8 Any X
i=%,ie cos ® =12 Not 8 X X

8 X

Whereas the solutions in Table 10 suffice to describe growth
twins in corundum and hematite, this is not the case for
deformation twins. Those are described in structural coordi-
nates by

basal twin:

K, = (003), 5, =[122], K, = (011), n, = [360],  (10)
rhombohedral twin:

K, = (012), n, = [241], K, = (014), n, =[121]  (11)

(cf- Shiue & Phillips, 1984).

Relations (9) show that these descriptions correspond to the
first solution in Table 11 for basal twins and to the second
solution in Table 10 for rhombohedral ones.

5. Tetragonal lattices

In the tetragonal case, the specific misorientations with X <5
have been given by Grimmer (2003) in his Tables 4 and 5 for
primitive tetragonal (¢P) lattices and in his Tables 9 and 10 for
body-centred tetragonal (¢/) lattices. The results are illustrated
in Fig. 5.

The three cubic lattices appear in Fig. 5 as special cases of
tetragonal lattices: cP and c/ are the special cases of P and ¢/
with s = 1; cF is the special case of ¢/ with s* = 2.

Table 12 indicates which of the specific misorientations
listed in Tables 4, 5, 9 and 10 of Grimmer (2003) can be
described not only by 180° rotations but also by 60, 90 or 120°
rotations.?

In the tetragonal case, ® is obtained from the integer i given
in Tables 4, 5, 9 and 10 of Grimmer (2003) by ® =

3 Correction: in Table 10 of Grimmer (2003), the representative (m, U, V, W)
in the row with c/a = 1.2247 is (1100), not (2110).

Table 13

Specific misorientations of tetragonal lattices with £ < 5 and ® # ©.

Representative

x s=ca (m U V,W) cos® cos® O(°) D (°)
Yp=%=3 1 3111 3/6 4/6 60 48.1897
=3 14142 3201 36 4/6 60 48.1897
Sp=3X=4 05774 3111 18 218 82.8192  75.5225
=4 08165 3201 1718 2/8 82.8192  75.5225
Yp=2%;=4 17321 3331 1/8 2/8 82.8192  75.5225
=4 24495 3601 18 218 82.8192  75.5225
Yp=%;=5 1 3311 —1/10 0 957392 90
=5 14142 3421 —1/10 0 957392 90

arccos(i/2%). (The multiplicity ¥ is called ¥p in Tables 4 and 5
and ¥; in Tables 9 and 10, referring to ¢P and ¢ lattices,
respectively.) The cases with W #£ 0 (i.e. ® # ©®) in these four
tables are listed in our Table 13.

It is observed in Table 13 and the four tables in Grimmer
(2003) mentioned above that cos ® < 0.8 (¥ > 36.87°) for tP
and ¢/ lattices with X < 5. It follows that sin® > 0.6, i.e.
8 > arctan[0.6]s> — 7?|/(2rs)], holds. This bound restricts, for a
given value of r, the range of s values that may give rise to
twins with ¥ < 5 and obliquities smaller than a specified limit.

6. Discussion and conclusions

Early work on coincidence site lattices (CSL) of the French
school (Bonnet & Durand, 1975) has started as a general-
ization of twin laws with twin index > 1; the notion of the CSL
multiplicity X is a straightforward generalization of the twin
index to those coincidence misorientations that cannot be
described by any 180° rotation. However, new notions have
been introduced in CSL theory, where the connections with
notions from the field of twinning are not always evident.
Specifically, the connection between the CSL deformation
parameter ¢ and the obliquity § in optically uniaxial crystals
has been unknown before and is now established in this paper.

Our comparison of observed laws of growth twinning in
quartz, corundum and hematite with the solutions satisfying
the Mallard criterion leads us to propose the following
modification of this criterion in the case of growth twins: only
those pairs of a lattice plane (hk/) and a lattice direction [uvw]
that become normal for an appropriate value s of the axial
ratio c/a should be considered as candidates for twin laws. All
possible twin laws of 2P and /R lattices satisfying the modified
Mallard criterion are then obtained from Tables 1, 8 and 9.
The graphical representation of these tables in Fig. 3 shows
their symmetry with respect to pseudo-reciprocity. The
varying density of points as a function of s illustrates that the
number of available twin laws satisfying the modified Mallard
criterion depends on the axial ratio r of the crystal under
consideration. Analogous results were obtained for tetragonal
lattices.

We suggest to extend the proposed modification of
Mallard’s criterion for growth twins as follows to all crystal
families: only those pairs of a lattice plane (hk/) and a lattice
direction [uvw] that become normal for appropriate lattice
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parameters should be considered as candidates for twin laws
of growth twins. Table 14 gives the corresponding restrictions
on (hkl) and [uvw] explicitly.

Note that all the solutions selected in Table 3.3.8.2 of Hahn
& Klapper (2003) satisfy these restrictions. In our Tables 2 and
3, it was shown that Friedel (1923) missed one of the solutions
related to reticular merohedry and all but one of the 30
solutions not related to reticular merohedry. This makes us
wonder whether he intuitively applied the restrictions
proposed in Table 14.

In the case of reticular merohedry, i.e. in particular in all the
cases given in Tables 1, 8 and 9, the twin index ¥ gives the
volume ratio between primitive cells of the CSL generated by
a mirror reflection in (Akl) or alternatively by a 180° rotation
about [uvw]. But what is the relation between the twin index
and either the mirror reflection in (hk/) or the 180° rotation
about [uvw] in those cases not related to reticular merohedry?
Consider the row with ¥ = 5 in Table 3 as an example. The
parallelohedron defined by [110] and a smallest mesh in (551)
has a volume that is ten times the volume of a primitive cell.
The twin index 5 is assigned to it because this parallelohedron
has points of the hexagonal lattice also in the centres of a pair
of opposite faces (Donnay & Donnay, 1972). The 180° rotation
about [110] is a symmetry rotation; the corresponding twin
index is 1 (not 5); a mirror reflection in (551) generates a CSL
with twin index 610 if c¢/a = 1.1. Also, the density of lattice
points in the plane (551) is 11.18 times smaller than in the
basal plane. We conclude that a small twin index does not
indicate a probable twin law in the cases not related to reti-
cular merohedry.

To illustrate the difference in the formulation of twin laws
for growth and deformation twins, it is instructive to consider
the spinel law and its analogue for deformation twins. Spinel
growth twins can be described by a reflection in (111) or a 180°
rotation about [111], corresponding to ¥ = 3 and § = 0 and
satisfying the restrictions given in Table 14. Deformation twins
with ¥ = 3 of f.c.c. metals also obey the spinel law (see e.g.
Hahn & Klapper, 2003) and are described by

K, = (111), n, = 3[112]. K, = (111), n, =3[112] ~ (12)
(see e.g. Kelly et al.,, 2000). Using the correspondences (9) for
K, and 1,, one obtains ¥ = 1 and § = 19.47° according to the
formulas for cF lattices given by Donnay & Donnay (1972).*
Note that the deformation shear determines ¥ and § uniquely
and that neither Mallard’s criterion nor the restrictions of
Table 14 are satisfied, similarly as for (111) twins in h.c.p.
metals and for basal twins in corundum and hematite.

The criterion for possible twin laws therefore depends on
the type of twinning. If the relations (9) are used to describe
deformation twins, also solutions that are not related to re-
ticular merohedry play a role; the Mallard limit may have to be

4 The spinel law is nothing but the basal twin law of AR lattices in the special
case c/a = \/5, in which the /R lattice becomes cF. This is true not only for the
formulation as a twin with ¥ = 3 and § = 0 but also for the description of the
deformation mechanism with ¥ =1 and § = 19.47°. Note that relation (10) is
formulated in hexagonal and (12) in cubic coordinates.

Table 14
Proposed restrictions on (hkl) and [uvw] for twin laws of growth twins.

(hkl) and [uvw] refer to the conventional choice of the crystal coordinate
system. (Note that the hexagonal family comprises AR as well as hP.)

Crystal family Restrictionst

Cubic hik:l=u:v:w (i.e. § = 0)

Tetragonal hik=uwv,[=0<w=0

Hexagonal hik=Qu—v):Q2v—u),l=0<w=0
Orthorhombic h=0<u=0k=0<v=0,/=0<w=0
Monoclinic k=0v=0h=1l=0<u=w=0
Triclinic (= anorthic) No restrictions

+ Key: <> means ‘if and only if’, comma means logical AND.

tightened for the twin index but considerably widened for the
obliquity.

For twins grown from twinned nuclei, all the descriptions in
the literature of which the authors are aware satisfy the
restrictions proposed in Table 14; on the other hand, a number
of twin laws firmly established in high-quartz suggest that the
Mallard limit on the twin index should be relaxed.

Finally, aggregates formed when macroscopic crystals meet
in a fluid may show misorientations that are best described by
considering lattices with parameters within the experimental
range (i.e. § >~ 0) and allowing for large values of the twin
index. An example is the Zinnwald twin described by
Drugman (1930), which has been discussed in detail by Friedel
(1933). In this case, a {101} rhombohedral face of each indi-
vidual is parallel to a prism face {100} of the other, one set
being in contact. The misorientation can be described by a
rotation about [100] by an angle which is theoretically 38.21°
for c¢/a = 1.1, in excellent agreement with the mean of the
experimental values, which was 38°14’, i.e. 38.23° according to
Friedel (1933). Both Drugman and Friedel concluded on the
basis of experimental evidence that this twin originates from
the coalescence of two single crystals floating in the magma.
Friedel (1933) interprets the Zinnwald twin as one of the very
few examples where the lattice coincidence is only one-
dimensional, namely along [100]. Grimmer & Kunze (2003)
showed that also interpretations with two- or three-dimen-
sional coincidence are possible. These coincidences are
approximate but become perfect for c¢/a = 1.1, a good
approximation to the axial ratio of high-quartz at the elevated
temperature and pressure at which the two crystals may have
coalesced (c/a >~ 1.092), and an excellent approximation to the
axial ratio of a-quartz at ambient conditions, i.e. the present
state of the twin (c/a = 1.10000 £ 0.00005). The coincident cell
in the contact plane is rectangular with lattice parameters a
and 28c = 30.8a. Its area is 28 times bigger than the smallest
mesh in the prism face and 22 times bigger than the smallest
mesh in the rhombohedral face. There exists also a three-
dimensional coincident cell with volume 308 times the volume
of a primitive cell of the AP lattice. It contains coincident
points in every 11th prism face and in every 14th rhombohe-
dral face.

Other examples of aggregates with large values of ¥ have
been discussed by Mykura et al. (1980) and by Nespolo et al.
(1999).
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It has been shown here that all coincidence misorientations
with £ < 5 of tP, tI, hP and hR lattices can be expressed by
180° rotations about appropriate crystallographic axes with six
exceptions. These exceptional cases cannot be described by 60,
90 or 120° rotations either; thus they do not correspond to
twins. The exceptions relate to the special cases in which a
trigonal or tetragonal crystal has a cP, cI or cF lattice.
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